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Abstract

This paper examines how privacy regulation has shaped the trajectory of artificial
intelligence (AI) innovation across jurisdictions. We construct a novel taxonomy of
AI technologies based on their data intensity and analyze patent applications from
57 countries across 76 industries from 2010 to 2021. Our descriptive analysis re-
veals three key patterns: a substantial shift from data-saving to data-intensive AI
methods over the 2010s, increasing market concentration in innovation among es-
tablished firms, and pronounced geographic heterogeneity in both innovation output
and technological focus around the world. Exploiting variation in firms’ exposure to
the European Union’s General Data Protection Regulation (GDPR), we find that ex-
posed applicants significantly altered their technological trajectories. Applicants with
greater exposure to EU markets increased their data-saving patents while decreasing
data-intensive ones relative to the pre-GDPR period. This effect is driven primarily by
EU-based firms. Additionally, the GDPR appears to have reduced overall AI patenting
in the EU while reinforcing the market dominance of established companies.
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1 Introduction

Recent scholarship argues that the current path of artificial intelligence (AI) may pro-

duce various social, economic, and political harms (Acemoglu, 2023a,b; Frey, 2019; Kasy,

2022). Among other worries, the violation of privacy due to the accumulation of personal

data, coupled with enhanced capabilities for behavioral manipulation (Acemoglu, 2023b)

have led scholars to suggest that companies are building “the wrong kind of AI” (Acemoglu

and Restrepo, 2020; Acemoglu and Johnson, 2023).

However, these concerns may manifest differently across regions. In the United States,

where data privacy relies on a patchwork of sector-specific regulations rather than com-

prehensive federal protection, AI research has increasingly focused on data-intensive deep

learning methods (Klinger et al., 2020). This institutional environment, together with

deep learning’s inherent returns to scale, has generated strong corporate incentives for

systematic personal data accumulation. China’s developmental trajectory demonstrates

even stronger tendencies in this direction: state procurement policies have explicitly incen-

tivized AI development for surveillance applications (Beraja et al., 2021; Beraja, Yang and

Yuchtman, 2023), and these technologies are now being exported globally (Beraja, Kao,

Yang and Yuchtman, 2023). The European Union, in contrast, has pursued a distinctive

regulatory approach through its General Data Protection Regulation (GDPR), emphasizing

individual privacy protection over data accumulation.

In this paper, we investigate how heterogeneous privacy regulations have impacted in-

novation output in AI and shaped the trajectory of AI development across jurisdictions. Do-

ing so, we situate our analysis within the literature on directed technological change, which

posits that when a factor of production becomes scarce or costly, technological innovation

tends to shift toward reducing dependence on that factor (Acemoglu, 1998, 2002; Hanlon,

2015; Acemoglu et al., 2015; Hassler et al., 2021). Examples include high wages and labor



shortages spurring the invention and adoption of labor-saving technologies (Habakkuk,

1962; Allen, 2009; Hornbeck and Naidu, 2014; Presidente, 2023), and oil price shocks

or carbon taxes aiding the development of green technologies (Acemoglu et al., 2012;

Hassler et al., 2021). Following this logic, we hypothesize that the increasing cost of stor-

ing and processing personal data resulting from the GDPR (Frey and Presidente, 2024)

has prompted companies to invest more in data-saving methods relative to data-intensive

ones, thereby shifting the composition of AI patenting.

For our empirical analysis, we develop a novel framework for analyzing AI technologies

through the lens of their data intensity. Deep learning methods are the most data-hungry,

requiring vast datasets to tune millions of parameters effectively. In contrast, knowledge

or rules-based systems rely on structured rules and expert knowledge rather than exten-

sive data, while Bayesian methods offer efficiency by incorporating prior knowledge. In

addition, several techniques have emerged to reduce data requirements: transfer learn-

ing (zero-shot and few-shot learning included) repurposes knowledge across tasks, while

synthetic data generation creates artificial training examples. We collectively classify these

methods as “data-saving”, in contrast to deep learning approaches, which we refer to as

“data-intensive”.

We next take our taxonomy to the data. Specifically, we identify relevant patents

through keyword searches of patent titles and abstracts in PATSTAT, and analyze them

at the patent family level to avoid counting the same invention multiple times across juris-

dictions. Based on this dataset, we proceed to document a number of stylized facts about

AI patenting around the world. First, we document a striking technological shift from

data-saving AI to data-intensive deep learning over the 2010s: while the data-intensive AI

stock grew by 52% percent per year over the decade, data-saving patenting recorded a rel-

atively modest growth rate of 19% per year. Notably, however, data-saving patent activity
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remained below its 2004 level until 2013, but experienced an uptick following the GDPR’s

implementation in 2018.

Second, the global AI patent distribution reveals pronounced geographic heterogeneity

in both volume and technological focus. While the United States and China showed compa-

rable AI patent filings in 2014, China’s activity surged following its “Made in China 2025”

initiative. Chinese patenting activity is particularly notable in academia, with Chinese

universities contributing 86% of global data-intensive AI patents filed by higher educa-

tion institutions, while Chinese companies represent 37% of private sector data-intensive

patents globally. In contrast, U.S. companies lead in data-saving AI with 45% of global

corporate applications, while the EU shows relative strength in private sector data-saving

technologies despite its overall modest innovation activity in AI.

With these patterns in mind, we next turn to systematically investigate the role of regu-

lation in shaping AI innovation trajectories. By exploiting the timing of the introduction of

the European Union’s General Data Protection Regulation (GDPR), and taking advantage

of applicants’ varying exposure to it, we examine how data privacy has impacted techno-

logical choices in AI development. For this part of our empirical analysis, we construct

a novel dataset of 6,801 patenting entities from 49 countries, spanning the period of the

most recent AI wave from 2010 to 2021. To measure applicants’ GDPR exposure, we use

inter-industry linkages detailed in the OECD Inter-Country Input-Output (ICIO) Tables,

following a strategy similar to Frey and Presidente (2024). Specifically, we calculate the

proportion of output each 2-digit industry-country pair sells to European consumers and

use this data to assess the extent of applicants’ regulatory exposure. This approach is cru-

cial as the GDPR pertains solely to personal data. By utilizing the breakdown of the ICIO

Tables into goods sent to businesses for intermediate use versus final household consump-

tion, we can exclude business-to-business transactions, which are less likely to be impacted
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by the regulation, and focus on transactions with end-consumers.

Based on this approach, we provide suggestive evidence that applicants exposed to

the GDPR disproportionately reduced their patenting in data-intensive AI technologies,

while increasing their patenting in data-saving approaches to AI. Our baseline analysis—

including patents filed by firms, universities, governments, and individuals—reveals that

GDPR-exposed applicants increased data-saving AI patents while reducing data-intensive

ones by approximately 1% in absolute terms. This effect is particularly pronounced among

EU-based applicants, who increased data-saving patents by 1.6 percentage points while

reducing data-intensive patents by 1.5 percentage points after 2018. The primary drivers

of this shift, we find, were firms based in the European Union. This implies that companies

responded to the new regulation by shifting their technological efforts away from relying

on increasingly costly data, limiting their dependence on it, in line with the larger literature

on directed technological change (Acemoglu, 1998, 2002; Hanlon, 2015; Acemoglu et al.,

2015; Hassler et al., 2021).

Our paper relates to three strands of research. First, we provide novel empirical evi-

dence on directed technological change in artificial intelligence, demonstrating how regu-

latory constraints can systematically redirect innovation efforts. This way, we contribute to

research on national innovation systems by revealing how data privacy regulation shapes

distinct regional innovation trajectories, with implications for technological specialization

across jurisdictions (Edler et al., 2023; Edquist, 2013; Fagerberg and Srholec, 2008; Nel-

son, 1993; Nelson and Nelson, 2002).

Second, we add to a growing body of work investigating the economic consequences

of data privacy regulation (Aridor et al., 2020; Goldberg et al., 2024; Goldfarb and Tucker,

2012; Johnson et al., 2022; Johnson, forthcoming; Campbell et al., 2015), which has

mostly focused on online outcomes, with some noteworthy exceptions (Frey and Presi-
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dente, 2024). Our paper is most closely related to a subset of studies focusing on the

impact of privacy regulation on the adoption of technology in healthcare, showing that

such regulations, which limit hospitals’ ability to release health information, have led to

a slower uptake of data-intensive medical technologies (Miller and Tucker, 2009, 2011,

2018). Conversely, Frey and Presidente (2024) show that the GDPR was accompanied by

an uptake in patenting related to the development of compliant IT systems. In contrast to

these studies, we examine the impact of privacy regulation on the direction of technological

change in AI.

Finally, we contribute to an emerging literature focusing on the measurement of AI

adoption and innovation (Babina et al., 2020; Bonney et al., 2024). For example, Cock-

burn et al. (2019) have used keyword search to identify patterns of patenting in the AI

fields of symbolic systems, learning systems and robotics; while WIPO (2019) has devel-

oped another methodology, combining a set of keywords with computer-specific technolog-

ical classification codes. Similarly, Giczy et al. (2022) trained a machine learning classifier

to analyze patent texts and citations, aiming to pinpoint innovations across various do-

mains such as knowledge processing, speech technology, hardware design, evolutionary

computation, natural language processing (NLP), computer vision, and planning and con-

trol systems. What these approaches have in common is that they do not consider the

data-intensity of different AI methodologies. We add to this literature by providing the first

taxonomy for classifying AI patents according to their data-intensity, which we proceed to

implement.

The remainder of this paper is structured as follows. In Section 2, we discuss our

data sources and approaches to measurement. Section 3 discusses our results and probes

our key findings in a series of robustness checks. Finally, in Section 4, we provide our

conclusions and discuss avenues for future research.
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2 Data and Measurement

In this section, we outline our taxonomy for classifying AI patents, as well as the data

sources and methods employed in our analysis.

2.1 A Taxonomy of AI

We begin by creating a new dataset of AI patents, categorizing various AI methodologies.

Unlike prior research, our aim is to classify these approaches based on their data intensity,

employing an extensive set of keywords for this particular differentiation. To compile a

comprehensive list keywords, we rely on the literature outlining different AI methodolo-

gies (Russell and Norvig, 2016; Goodfellow et al., 2016; Wooldridge, 2020; Marcus, 2018;

Michalski et al., 2013), as well as the help of leading experts in the field of Computer Sci-

ence.1 The resulting classification scheme, detailed in Table 1, allows us to systematically

analyze AI patents based on their data intensity. Below, we describe the key technologies

captured in our taxonomy and their distinctive characteristics regarding data requirements.

Deep learning: Keywords like back-propagation, connectionist, deep learning, and

neural network all represent the most data-hungry AI technologies. These methods simu-

late brain processes by adjusting connection weights between artificial neurons to minimize

prediction errors (Russell and Norvig, 2016; Goodfellow et al., 2016; Mitchell, 2019). The

word connectionist, for example, refers to how nodes (analogous to neurons in the brain)

are connected within these networks and how these connections can be strengthened or

weakened to process and store information, while back-propagation is an approach that

adjusts network weights during training to enhance output accuracy. Moreover, the term

1We have benefited from wide-ranging conversations with AI researchers at the Oxford Martin School,
the Oxford Internet Institute, the Oxford Department of Computer Science, as well as the Department of
Engineering Science. We are especially indebted to Chris Russell, Michael Osborne and Michael Wooldridge
for their generous advice.
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deep learning denotes the depth of the layers in the network. The reason these approaches

are so data-intensive is that the learning process involves adjusting the weights of the net-

work’s connections to minimize errors—-more data enables better modeling of complex

patterns while preventing overfitting across the many parameters.

Transfer learning: Modern deep learning has developed several sophisticated ap-

proaches to reduce data requirements through knowledge transfer (Zhuang et al., 2020).

Transfer learning significantly cuts down training data needs by repurposing models across

related tasks. This family of techniques includes increasingly sophisticated variants: zero-

shot learning enables models like GPT-3 to perform entirely new tasks without any task-

specific training examples, while one-shot or few-shot learning allows face recognition

systems to identify new individuals from just a few examples. These approaches achieve

efficiency by leveraging knowledge accumulated from broader domains—similar to how

humans apply existing knowledge to learn new but related skills.

Synthetic data: When real-world data is scarce or costly, synthetic data generation can

provide an alternative. This approach uses algorithms, simulations, or generative models

to create artificial training examples that mimic real-world data characteristics. In pro-

tein structure prediction, for example, DeepMind’s AlphaFold incorporated its own high-

confidence predictions as additional training data to improve performance (Jumper et al.,

2021). Similarly, autonomous vehicle companies generate millions of simulated driving

scenarios to train their systems, capturing rare events and dangerous situations that would

be impractical or unsafe to collect in reality.

Knowledge-based systems: Expert systems, intelligent knowledge-based systems, knowl-

edge representation, knowledge-based systems, ontologies, and rule-based systems operate

using structured, predefined knowledge rather than learning from large datasets. At their

core, these systems encode human expertise through explicit rules, logical frameworks,
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and formal relationships. Medical expert systems like MYCIN examplify this approach by

using thousands of if-then rules to diagnose infections and recommend antibiotics, while

legal expert systems apply structured rules to assess contract compliance or tax obliga-

tions. Moreover, ontologies, such as SNOMED CT in healthcare with its 350,000+ medical

concepts, provide the fundamental structure for organizing domain knowledge. In short,

what distinguishes these approaches from data-intensive AI is their reliance on explicit

knowledge engineering rather than bottom-up machine learning.

Bayesian statistics: Bayesian methods stand out for their ability to perform effectively

with limited data by formally incorporating prior knowledge into the learning process. For

example, in drug discovery, Bayesian optimization can identify promising compounds after

just 50-100 experiments. Similarly, a Bayesian spam filter can achieve reasonable perfor-

mance with just hundreds of emails by leveraging prior probabilities of word frequencies.

This efficiency stems from their mathematical framework that updates initial beliefs (pri-

ors) with new evidence, rather than learning patterns from scratch. For this reason, we

collectively refer to Bayesian methods and knowledge-based systems as exploiting struc-

ture.

Data acquisition methods: Another set of approaches relate to data acquisition meth-

ods, which aim to reduce the need for large amounts of manually labeled data. Automatic

image annotation, for example, generates labels/tags for images using existing algorithms,

reducing manual effort but still requiring initial labeled data for training. Semi-supervised

learning, on the other hand, efficiently combines a small amount of labeled data with a

large amount of unlabeled data, while self-supervised learning requires no manual labels,

instead creating supervisory signals from the data itself, such as predicting missing parts

of images. Meanwhile, active learning achieves efficiency by having the model identify the

most informative samples for human labeling, minimizing effort by selecting only the most
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valuable cases to label.

Reinforcement learning: Finally, while reinforcement learning is computationally

data-hungry, requiring millions of interactions to learn effectively, it can potentially be

privacy-preserving since it may learn through self-generated experiences and simulated

environments rather than requiring sensitive personal data like the user records, medi-

cal histories, and behavioral data typically needed for supervised learning. For example,

game-playing agents like AlphaGo achieved superhuman performance through self-play

rather than studying human game records. Moreover, in industrial applications, reinforce-

ment learning systems optimize manufacturing processes or energy management through

direct interaction with system models, eliminating the need for historical operational data

that might contain sensitive information.

Throughout the paper, we use the terms “deep learning” and “data-intensive” inter-

changeably. Our measure of data-saving AI, in contrast, encompasses knowledge-based

systems, Bayesian statistics, transfer learning and synthetic data. However, we take no

position on whether reinforcement learning and data acquisition methods primarily save

or consume data. Although they can operate without personal data, many commercial

applications heavily depend on it. Recommendation systems, social media feeds, and per-

sonalized advertising use reinforcement learning to process individual user interactions,

clicks, viewing time, and purchase history. Similarly, modern data acquisition approaches

like semi-supervised and active learning, though designed to reduce manual labeling, often

require processing larger volumes of user-generated content and behavioral data. Given

this ambiguity, we consider these categories separately in our empirical analysis.
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2.2 Tagging AI Patents

We next take our taxonomy to the data. The main dataset used in this paper is built

from EPO’s PATSTAT Global database (2024 Spring Edition). PATSTAT Global contains

global patent data, including information on patent classification codes, patent families,

applicants and inventors, and full titles and abstracts. To construct our dataset, we first

identify patents whose titles or abstracts contain any of the keywords listed in Table 1. We

then collect information on the families of tagged patents. Because the same invention can

be filed multiple times (both within the same patent office and in multiple jurisdictions),

the patent family is the most appropriate unit of analysis when measuring new inventions.

We collect all patent classification codes associated with each family, and retain only those

which include the International Patent Classification group G06 (‘Computing; Calculating;

Counting’), which account for more than 80% of identified patents.2 We use the smallest

value of the variable earliest filing year across all applications in the family as the year

the invention was made.
2Specifically, 83.36% of all patent families tagged and 81.91% of those with an earliest filing year between

1980 and 2021.
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Category Keywords

Deep learning back-propagation, connectionist, deep learning, neural network
Synthetic data synthetic data, virtual sample generation
Transfer learning few-shot learning, one-shot learning, transfer learning, zero-shot learn-

ing
Exploiting structure bayesian, equivariance AND (machine learning OR algorithm OR com-

puter science), expert system, invariance AND (machine learning OR al-
gorithm OR computer science), knowledge representation, knowledge-
based systems, ontology, rule-based systems

Data acquisition active learning, automatic image annotation, self-supervised learning,
semi-supervised learning

Reinforcement learning reinforcement learning

Table 1: Taxonomy of AI categories

2.3 Applicant-level Data

We next draw on PATSTAT to construct our applicant-level dataset. The EPO provides

information on inventors and applicants, along with their country codes—we collect this

information for personal and institutional records associated with the patent families we

tag. As we are interested in analyzing innovation across all applicant types, we retain

records regardless of psn sector classification. In other words, our dataset contains patents

filed by individuals, universities, governments and firms.

In some cases, applicant names are harmonized by the EPO (such that small discrepan-

cies in spelling do not lead to an entity being assigned two separate psn id numbers). For

our empirical analysis in Section 4, we drop all psn id records which have psn level == 0

(indicating no harmonization), and retain those which have at least been harmonized via

an automated procedure. For our descriptive analysis of cross-country trends in Section 3,

however, we include the complete set of AI patents including non-harmonized records to

maximize representativeness.
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After selecting the applicants associated with our tagged patents, we collect informa-

tion on all patent families (whether tagged as AI or not) associated with those applicants in

PATSTAT. We use this information to proxy applicants’ age based on the year they are first

observed in PATSTAT; size is proxied by the cumulative stock of patent families—including

non-AI ones—and the industries associated to the patents. The latter is based on PATSTAT’s

Table TLS229, which assigns a set of NACE2 codes to each patent application, alongside a

variable weight. Specifically, the NACE2 codes are based on a mapping between the Inter-

national Patent Classification (IPC) and the Statistical Classification of Economic Activities

in the European Community (Rev 2). There can be multiple NACE2 codes per application,

as there are usually multiple IPC codes associated with a patent. The weight indicates

the degree to which the application is associated with each particular industry, with the

weights for all NACE2 codes summing up to 1 for each application.

We use the NACE2 codes associated with applications filed between 2000 and 2010 to

construct applicant-level NACE2 lists and weights. We then sum up the weights associated

with each combination of psn id and nace2 code (at the 2-digit level) across all applications

associated with the psn id. We further divide this sum by the sum of all weights per psn id,

such that the weights associated with all of the applicant’s NACE2 codes sum up to 1. We

then use the NACE2 code with the highest weight as the institution’s primary industry and

the full set of NACE2 codes and weights to construct our exposure variable in Section 4.2.

Finally, we construct applicant-level patent family counts and family stocks for each

type of patent family (e.g. reinforcement learning, deep learning, etc.). For each ap-

plicant and category, we calculate annual patent family counts and construct cumulative

patent stocks, where for each applicant j and year t, FamStockjt = FamStockjt−1 ∗0.85+

FamCountjt, starting from 1980. Patent families are discounted at an annual rate of 15%

to account for the decay in their value over time (Hall et al., 2005). Our baseline analysis
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uses changes in the respective shares of each category in the overall family stock, effectively

measuring changes in the composition of innovation by exposed firms.

As it can take up to three years for new patents to be added, we use data on patent

families with an earliest filing year of 2021 or earlier when constructing applicant-level

patent counts. Our final dataset covers the period 2010-2021, with patent family stock

variables incorporating patenting information going back to 1980 as described above.

3 Descriptive Statistics

Based on our applicant-level dataset, we document several key trends in AI patenting over

the past decades, including patents filed by companies, government institutions, universi-

ties, and individuals around the world. For simplicity, in the first set of figures, we classify

patents as either data-intensive or data-saving, following the taxonomy outlined above.

Figure 1 shows that over time, data-intensive AI patent applications have become much

more frequent than data-saving ones. In 2000, data-saving and data-intensive patent appli-

cations showed a comparable number of patent families per applicant. The two categories

then exhibited parallel growth trajectories through 2012, with only minor variations in rel-

ative counts. Beginning in 2013, however, data-intensive patents experienced substantially

higher growth rates. This divergence accelerated markedly around 2016—the year Google

DeepMind’s AlphaGo beat the World Go Champion Lee Sedol. Strikingly, meanwhile, data-

saving patenting did not again exceed its 2004 level until 2013. We further note that the

recent upsurge in data-saving AI patenting coincides with the implementation of the GDPR

in 2018.

Figure 2 shows the same pattern, but this time for disaggregated AI technology classes.

Again, the striking increase in patents related to deep learning dwarfs other categories,

although we note a marked rise across several categories of AI. Reinforcement learning
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has established itself as the second most prominent category, experiencing particularly

fast growth of 207% since 2018, coinciding with a plateau in knowledge-based systems

patents. However, other data-saving approaches have demonstrated significant momen-

tum: between 2018 and 2021, transfer learning patents surged by 185%, while synthetic

data generation and Bayesian methods expanded by 86% and 68% respectively. Though

these technologies began from modest baselines, their rapid growth indicates rising inter-

est in data-efficient methodologies.

Figure 3 focuses on patents filed by companies, revealing notable temporal shifts in

business demographics. Throughout the 2000s and early 2010s, new market entrants and

startups under 5 years old collectively accounted for approximately one-third of AI patent

applications. However, their share declined markedly to one-fifth in 2013, followed by a

further reduction during the 2020 Covid-19 pandemic. In particular, we observe a sharp

contraction of data-intensive applications by entrants, which falls abruptly at the onset

of the 2020s, after increasing by 40 percentage points in the first decade of the sample.

These findings are in line with well-documented trends, such as the decline in business

dynamism in the technology sector (Decker et al., 2016), as well as the rise of superstar

firms (Autor et al., 2020; Stiebale et al., 2020), whether due to lobbying and protective

regulation (Gutiérrez and Philippon, 2019), or changes in technology (Tambe et al., 2020).

We next examine AI patenting trends across geographies and applicant types. In 2014,

the United States and China filed a comparable number of AI patents (Figure 4). However,

following the launch of Xi Jinping’s “Made in China 2025” industrial policy initiative, which

designated AI as a priority technology, China’s AI patenting activity experienced a dramatic

surge, particularly in the public sector (Figure 5). Among universities and government in-

stitutions, Chinese applicants account for over 86% and 54% of global AI patents, respec-

tively (compared to 3% and 4%, respectively, for their U.S. counterparts). This dominance
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is especially pronounced in the data-intensive category, where recent research highlights

the role of government procurement in generating training data for private sector use (Be-

raja et al., 2021; Beraja, Yang and Yuchtman, 2023). Reflecting this, Chinese companies

represent 37% of data-intensive patents filed by private entities.

In contrast, data-saving AI sees U.S. companies leading the field, accounting for 45% of

global patent applications. While the European Union is notably underrepresented across

all categories, it plays a more significant role in private sector data-saving AI, contribut-

ing 12% of global data-saving patents filed by companies, and about 13% of total private

sector AI patents filed within the EU (compared to 5% in China, where specialization in

data-intensive AI is much more skewed; Figure 6). A similar pattern emerges among indi-

vidual applicants, with the U.S. and EU showing particularly strong shares in data-saving

technologies. Finally, we highlight the prominent role of South Korea, which stands out

in the public sector, accounting for 29% of global patents filed by government institutions.

The prominent share of patents filed by the public sector in countries like China and South

Korea underlines their respective traditions of state-led development.

We lastly take a more detailed look at the key players active within disaggregated AI

technology classes. Strikingly, China is by far most active across all technology classes,

synthetic data being a noteworthy exception (Figure 7). However, we caution against in-

terpreting the findings above as evidence of China leading in AI. Indeed, studies suggest

that China’s dramatic surge in patent filings may overstate actual innovation. Local gov-

ernment incentives for patent generation, including preferential tax policies and subsidies,

have demonstrably reduced patent quality, as reflected in lower renewal rates and low li-

censing revenue (Long and Wang, 2016).3 We also note that Europe, while lagging across

3Despite China’s substantial patent volume, its intellectual property receipts in 2023 amounted to just
$11 billion compared to the United States’ $126 billion, suggesting that Chinese patents generate limited
commercial value. See https://data.worldbank.org/indicator/BX.GSR.ROYL.CD?end=2021&locations=US-
CN&start=199. Accessed 19 August, 2024.
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all categories of AI, is particularly absent in the domain of data-hungry deep learning

systems. Conversely, Europe is better positioned in traditional knowledge-based systems,

Bayesian methods, as well as in synthetic data.

Examining the organizations driving these trends (Figure 8), we observe the extraordi-

nary volume of patents filed by Chinese universities and the Chinese Academy of Sciences

(CAS), spanning multiple AI technologies. We further note that established global com-

panies such as IBM and Siemens, along with public organizations like South Korea’s Elec-

tronics and Telecommunications Research Institute (ETRI), continue to dominate in the old

domain of knowledge-based systems. Meanwhile, the contributions of some relatively new

players, such as DeepMind (now Google DeepMind), are evident in the emerging field of

reinforcement learning.
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Figure 1: Average number of AI patent families per applicant

Notes: Each panel shows the average number of patent family applications per applicant across different AI categories
based on our full sample of patent-families filed during 2000-2021. The data-saving category (Panel B) entails
knowledge-based systems, Bayesian methods, transfer learning, and synthetic data. The data-intensive category (Panel C)
comprises deep learning patents. All AI patents (Panel A) include both categories plus reinforcement learning and data
acquisition methods.
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Figure 2: Patenting across AI technology classes per year

Notes: The figure shows the total number of AI patent families filed each year, classified by different AI categories based on
our full sample of patent-families filed during 2011-2021.
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Figure 3: Dynamism in AI-related companies

Notes: This figure is based on a sample of patents filed by companies only between 2000-2021. Each panel shows the
fraction of total AI patent family applications filed by different types of companies. Entrants are firms with 0 years of
existence, startups have between 0 and 5 years, and all others are classified as incumbents.
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Figure 4: AI patent families filed by country

Notes: The figure shows the total number of patent family applications filed worldwide, categorized by the geographical
origin of the applicants, based on a sample of patent-families filed during 2010-2021.
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Figure 5: AI patent families by institution and country

Notes: Each panel represents a different AI category based on our full sample of patent-families filed during 2000-2021.
The data-saving category (Panel B) entails knowledge-based systems, Bayesian methods, transfer learning, and synthetic
data. The data-intensive category (Panel C) comprises deep learning patents. All AI patents (Panel A) include both
categories plus reinforcement learning and data acquisition methods. Each bar corresponds different applicant institutions
recorded in PATSTAT, segmented by the applicant’s country of origin, indicating the fractional contribution of each country
within that institution type.
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Figure 6: AI patent family counts by technology class and country

Notes: The figure shows the composition of institution types originating data-saving and data-intensive patent family
application counts for each country based on our full sample of patent-families filed during 2000-2021.
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Figure 7: Top 5 countries by AI category

Notes: For each AI category, the figure displays the top 5 countries of origin with the highest number of patent family
applicants based on our full sample of patent-families filed during 2000-2021.
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Figure 8: Top 5 institutions by AI category

Notes: For each AI category, the figure displays the top 5 institutions with the highest number of patent family applicants
based on our full sample of patent-families filed during 2000-2021.
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4 Data-Biased Technical Change

In this section, we explore how privacy regulation has shaped the trajectory of AI de-

velopment across space. We begin with a brief overview of the General Data Protection

Regulation (GDPR) and its implications for AI patenting. Next, we outline our approach to

measuring applicants’ exposure to the GDPR. Finally, we detail our empirical strategy and

present evidence of varying trends in AI innovation among firms, public institutions, uni-

versities, and individual applicants with different levels of exposure to privacy regulation.

4.1 The General Data Protection Regulation

Organizations operating within the European Union must adhere to the GDPR, which de-

lineates guidelines for processing the personal data of EU residents, including browser

cookies and IP addresses. Importantly, for our purposes, the GDPR extends its jurisdiction

to entities incorporated outside EU countries if they target consumers residing in the Euro-

pean Union. Although enacted in April 2016, enforcement of the regulation began in May

2018, giving businesses a two-year transition period.

The GDPR has increased the cost of storing and processing data in several ways (John-

son et al., 2022; Goldberg et al., 2024; Frey and Presidente, 2024). For instance, since

its implementation, websites cannot share user data with third parties without obtaining

explicit consent from each user. This severely limits the ability of companies to harvest per-

sonal data and to benefit from digital marketing tools based on user profiling and cookie

analytics, services often outsourced by online vendors to third-party specialized entities.

In addition, the GDPR grants EU residents the rights to access, update, correct, delete,

and transfer their personal data. Institutions targeting EU residents are also required

to encrypt and anonymize any stored personal data and must regularly audit their data

handling processes for compliance. This includes the mandatory appointment of a data
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protection officer to supervise data management. These compliance requirements impose

significant costs on companies and other organizations, particularly those whose business

models depend on using highly data-insensitive AI models for prediction.

4.2 Exposure to Privacy Regulation

To measure patent applicants’ exposure to privacy regulation, we turn to exploit two key

features of the GDPR. First, the regulation concerns personal data, meaning that it mainly

affects business-to-consumer transactions. Second, its scope extends beyond entities oper-

ating within the European Union, applying to organizations—including firms, universities,

and individuals—based outside the EU but targeting its consumer market. As a result,

the GDPR exerts a global influence, with its reach shaped by the extent to which foreign

entities depend on EU consumers.

Our exposure variable is thus based on the share of sales of Information and Communi-

cations products and services (ICT) sold to EU final consumers by patent applicant f based

in country c operating in I > 0 2-digit industries indexed by i in the base year 2010. On

average, each applicant in our sample operates in 4.48 2-digit industries, which allows us

to aggregate the shares of ICT sales sold to EU final consumers by country-industry at the

applicant-level, which we denote by

SEU
a ≡

∑
ia

αiaS
EU
c,i

where αia is the weight assigned to each NACE2 code associated with a psn id and person ctry code

pair (recall that the weights sum up to 1 across the applicant’s NACE2 codes). In turn, SEU
c,i

are calculated based on the inter-industry connections provided by the OECD Inter-Country

Input-Output Tables (ICIO). These include information on international trade flows across
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36 2-digit ISIC Rev. 4 industries and 64 countries.4 This approach is crucial as the GDPR

pertains solely to personal data. By utilizing the breakdown of the ICIO Tables into goods

sold to businesses for intermediate use versus final household consumption, we can exclude

business-to-business transactions, which are less likely to be impacted by the regulation.

By focusing on the ICT sector (“J” in ISIC rev. 4)—arguably the most relevant in our

framework—we are restricting i in SEU
c,i to vary across the following three 2-digit indus-

tries: (i) “58T60”, including “Publishing activities”, “Motion picture, video and television

program production, sound recording and music publishing activities”, and “Programming

and broadcasting activities”; (ii) “61 - Telecommunications”, and (iii) “62T63”, which in-

cludes “Computer programming, consultancy and related activities” and “Information ser-

vice activities”. In other words, identification is based on within-ICT sector variation in

exposure, as well as on contrasting the patenting activity of entities in the ICT sector to

patent applicants in other industries.

4.3 Empirical Strategy

To mitigate endogeneity concerns we restrict our sample to applicants patenting before the

start of the study period: NACE2 codes for each applicant are collected based on patents

filed during the period 2000-2010. The need for using pre-period industries arises because

our exposure measure is based on industries applicants patent in, which are themselves

likely to be affected by the exposure of those industries to the GDPR. A drawback with

this approach is that using pre-period industries limits our analysis to incumbents and

prohibits us from exploring potential effects of the GDPR on firm entry. This is in contrast

4 ICIO are similar to standard input-output tables, but they include cross-country industry data on both
imports and exports. The tables are based on 819 industries, comprising all sectors of economic activity, then
aggregated at the 2-digit level by the OECD. For example, “Manufacturing” and “Information and Communica-
tions” (ICT) correspond to the 1-digit industries C and J in ISIC rev. 4, which in turn consist of several 2-digit
industries.
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to the descriptive statistics above, where we use the full sample, including new entrants.

To quantify the differences between firms at various levels of exposure to the GDPR,

we estimate the following Two-Way Fixed Effect model:

Ya,t = δ0 + δ1 S
EU
a ×GDPR+ uf + ut + ϵf,t (1)

where Ya,t is the outcome of applicant a in year t and GDPR is a dummy equal to one

from 2018 on. ϵa,t is an error term. We cluster errors at the applicant level to match the

variation in SEU
a .

To ease the interpretation of the results, we normalize SEU
a to have zero mean and

unitary standard deviation in the sample, so that the coefficients in the tables correspond

to the impact of GDPR for applicants one standard deviation above the average sample

exposure.

In the below, we first present the baseline results based on the full sample of patent

applicants—including firms, individual applicants, public institutions, and universities.

The rationale for including all applicant types is simple: patenting is inherently a commer-

cial activity, and the GDPR affects not only firms but also individual applicants and univer-

sities aiming to license and commercialize their innovations. We then focus specifically on

corporate applicants to analyze how the GDPR’s effects vary based on firm characteristics,

like size and age.

4.4 Results

Table 2 presents our baseline results using the full sample. Column 1 shows that the impact

of the GDPR on overall AI patenting activity globally is negative but not statistically signif-

icant. We further note a small but statistically significant compositional shift: applicants

exposed to the GDPR increased their investment in data-saving AI (column 2), while reduc-
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ing patenting in data-intensive technologies by a similar amount (column 3). Given that

the average share of data-saving patents is 0.44, while the average share of deep-learning

patents is 0.52, our estimates imply an average change of roughly 1% in absolute value.

These findings align with the literature on directed technical change (e.g. Acemoglu, 1998,

2002; Hanlon, 2015; Acemoglu et al., 2015; Hassler et al., 2021), suggesting that when

factors of production become scarce—in our case data regulation makes data collection

and processing more costly—it will redirect inventive efforts to limit dependence on that

factor.

Table 2: Baseline Results
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 -0.001 0.005* -0.006*
(0.003) (0.003) (0.003)

Observations 53,519 36,249 36,249
R-squared 0.894 0.943 0.939
Applicant FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between AI as a share of the overall patent family stock and each type of AI as a
share of the AI family stock in the full sample including individuals, universities, and companies. GDPR exposure is based
on the share of sales of Information and Communications products and services (ICT) sold to EU final consumers by patent
applicant in a given country and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the
years since 2018. Standard errors are clustered at the applicant level. The coefficients with ⋆⋆⋆ are significant at the 1%
level, with ⋆⋆ are significant at the 5% level, and with ⋆ are significant at the 10% level.

Given their stronger reliance on European consumer markets, EU-based applicants aim-

ing to bring their patents to market are expected to experience greater impacts from reg-

ulatory changes (Frey and Presidente, 2024). Table 3 presents the results of estimating

an interaction term between our exposure variable and a dummy flagging EU-based appli-

cants. In column 1, we observe a negative statistically significant impact of the GDPR on
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Table 3: Effect on EU27 applicants and others
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 -0.000 0.003 -0.004
(0.003) (0.003) (0.004)

GDPR exposure × post-2018 × EU27 -0.011*** 0.016*** -0.015***
(0.004) (0.005) (0.005)

Observations 53,519 36,249 36,249
R-squared 0.894 0.944 0.939
Applicant FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the full sample including individuals, universities, and companies. GDPR exposure is based on the share
of sales of Information and Communications products and services (ICT) sold to EU final consumers by patent applicant in
a given country and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since
2018. EU27 is a dummy variable equal to 1 if an applicant is based in a EU27 country. Standard errors are clustered at the
applicant level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant at the 5% level, and with ⋆

are significant at the 10% level.

patenting among applicants located in the EU. Moreover, the coefficients in columns 2 and

3 suggest that the above observed patterns are entirely driven by EU-based entities.5 As ex-

pected, the magnitude of our estimated coefficients is significantly larger: GDPR-exposed

EU applicants increased their investment in data-saving AI technologies by 1.6 percentage

points more than others (column 2) while reducing patenting in data-intensive technolo-

gies by 1.5 percentage points following the regulation’s enforcement in 2018 (column 3).

We take this finding to reflect a strategic shift of EU entities towards more data-efficient AI

practices, influenced by the new regulatory demands, albeit at the expense of the region’s

overall inventive capacity.

We next explore the role of companies in driving this shift. Column 1 of Table 4

shows that companies were more responsive to the regulation, increasing their overall AI

5 EU27 includes the United Kingdom until 2019, tagged as non-EU27 thereafter.
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patenting relative to universities and individual applicants—who instead decreased their

AI patenting activity. Columns 2 and 3 further show that companies were the key drivers

of the compositional shift in AI patenting, disproportionally increasing their shares of data-

saving AI, while reducing their reliance of data-intensive AI compared to individuals and

universities.

4.4.1 Firm Heterogeneity

For this reason, we further restrict the sample to focus on companies. Table 5 presents

our results. We note that in response to the introduction of the GDPR, EU companies

increased their share of data-saving families by over 30% and reduced their deep learning-

related families by more than 20%, with no statistically significant impact on overall AI

patenting. Given previous research showing GDPR’s disproportionate burden on smaller

firms (Frey and Presidente, 2024; Johnson et al., 2023; Peukert et al., 2022), we further

examine heterogeneity by firm age and size.6 Table 8 shows that older firms drive the

bulk of the effect: older companies increased patenting in data-saving AI relative to their

younger counterparts, while disproportionally reducing AI patenting in data-intensive AI.

Table 9, which focuses on size rather than age, shows a similar pattern, although a positive

correlation between the GDPR and data-saving AI is also in place for smaller companies.

This leads us to conclude that the patterns observed in Table 5 are primarily driven by

the oldest and largest EU companies, consistent with evidence of European incumbents’

enduring market dominance (Biondi et al., 2023).

6 This analysis comes with the caveat that in order to limit endogeneity issues, we restrict the sample to
companies that were already active in 2010. Thus, our age and size comparison cannot capture entrants.
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Table 4: Effect on companies and other applicants
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 -0.106*** -0.012 -0.016
(0.040) (0.031) (0.030)

GDPR exposure × post-2018 × company 0.175*** 0.307*** -0.228***
(0.036) (0.062) (0.063)

Observations 44,240 30,356 30,356
R-squared 0.888 0.943 0.938
Applicant FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the full sample including individuals, universities, and companies. GDPR exposure is based on the share
of sales of Information and Communications products and services (ICT) sold to EU final consumers by patent applicant in
a given country and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since
2018. The dummy “company” takes value 1 if the applicant is a private company. Standard errors are clustered at the
applicant level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant at the 5% level, and with ⋆

are significant at the 10% level.

Table 5: Effect on companies only
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 0.037 0.140** -0.110*
(0.034) (0.055) (0.062)

Observations 15,141 9,088 9,088
R-squared 0.791 0.897 0.887
Firm FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the restricted sample focusing on companies. GDPR exposure is based on the share of sales of
Information and Communications products and services (ICT) sold to EU final consumers by company in a given country
and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since 2018. Standard
errors are clustered at the company level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant
at the 5% level, and with ⋆ are significant at the 10% level.
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4.4.2 Technology Heterogeneity

Finally, we turn to explore heterogeneity by AI technology class. Table 6 presents the re-

sults for our full sample, while Table 7 restricts our sample to firms. We note that across the

full sample, applicants appear to have increased patenting activity in knowledge-based sys-

tems and Bayesian methods—both of which rely on limited or no data. However, only the

increase in Bayesian methods is statistically significant when evaluated separately. Turn-

ing to the subsample of companies in Table 7, we note a reduction reinforcement learning

patents, likely reflecting the GDPR’s impact on development costs for applications like

recommendation systems and personalized advertising that rely on individual user inter-

actions. Finally, we observe that companies responded by accelerating innovation in syn-

thetic data, effectively seeking substitutes for increasingly costly personal data. Notably,

these effects are statistically significant only when we focus on companies, which have be-

come increasingly narrowly focused on data-intensive and capital-intensive deep learning

methods (Klinger et al., 2020). This underscores the uneven impact of the GDPR, with

pronounced effects on companies reliant on data-intensive methods.

4.4.3 Pre-trends

A significant limitation of our findings is their descriptive nature; we cannot discount the

possibility of unobserved variables influencing AI patenting alongside changes in privacy

regulation. But although our data do not support causal claims, we can still probe the

robustness of the patterns documented above by examining whether our exposure variable

captures trends that are obviously unrelated to the GDPR. To that end, we replace the

post-2018 dummies with dummies marking previous years.

The results are presented in Table 10. Reassuringly, we find no pre-trends in 2012.

However, for data-saving patent families, the coefficient turns positive and significant in

33



Table 6: Effect on all applicants by type of AI
(1) (2) (3) (4) (5) (6) (7)

Data Exploiting Knowledge-based Reinforcement Synthetic Transfer
Bayesian acquisition structure systems learning data learning

Firm exposure × post-2018 0.004*** -0.001 0.006* 0.002 0.003 -0.000 -0.000*
(0.001) (0.001) (0.003) (0.003) (0.003) (0.001) (0.0002)

Observations 36,397 36,397 36,397 36,397 36,397 36,397 36,397
R-squared 0.949 0.962 0.943 0.953 0.891 0.951 0.782
Applicant FE yes yes yes yes yes yes yes
Year FE yes yes yes yes yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the full sample. GDPR exposure is based on the share of sales of Information and Communications
products and services (ICT) sold to EU final consumers by company in a given country and 2-digit industry in the base year
2010. Post-2018 is a dummy variable equal to 1 for the years since 2018. Standard errors are clustered at the company
level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant at the 5% level, and with ⋆ are
significant at the 10% level.

Table 7: Effect on firms by type of AI
(1) (2) (3) (4) (5) (6) (7)

Data Exploiting Knowledge-based Reinforcement Synthetic Transfer
Bayesian acquisition structure systems learning data learning

Firm exposure × post-2018 0.012 -0.005 0.105 0.093 -0.028** 0.025** -0.006
(0.040) (0.012) (0.065) (0.063) (0.013) (0.012) (0.006)

Observations 9,107 9,107 9,107 9,107 9,107 9,107 9,107
R-squared 0.900 0.842 0.893 0.895 0.805 0.899 0.538
Firm FE yes yes yes yes yes yes yes
Year FE yes yes yes yes yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the restricted sample focusing on companies. GDPR exposure is based on the share of sales of
Information and Communications products and services (ICT) sold to EU final consumers by company in a given country
and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since 2018. Standard
errors are clustered at the company level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant
at the 5% level, and with ⋆ are significant at the 10% level.
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Table 8: Effect on firms by age
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 -0.043 -0.111 0.055
(0.048) (0.098) (0.102)

GDPR exposure × post-2018 × age 0.004*** 0.012*** -0.008**
(0.001) (0.004) (0.004)

Observations 15,141 9,088 9,088
R-squared 0.792 0.897 0.888
Firm FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the restricted sample focusing on companies. GDPR exposure is based on the share of sales of
Information and Communications products and services (ICT) sold to EU final consumers by company in a given country
and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since 2018. Company
age is proxied by the difference between the first year the company is observed patenting in PATSTAT and the current year.
Standard errors are clustered at the company level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are
significant at the 5% level, and with ⋆ are significant at the 10% level.

Table 9: Firm size effects
(1) (2) (3)

All AI Data-saving Data-intensive

GDPR exposure × post-2018 0.034 0.115* -0.081
(0.034) (0.060) (0.068)

GDPR exposure × post-2018 × size 0.009*** 0.045*** -0.052***
(0.002) (0.012) (0.011)

Observations 15,141 9,088 9,088
R-squared 0.792 0.897 0.889
Firm FE yes yes yes
Year FE yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the restricted sample focusing on companies. GDPR exposure is based on the share of sales of
Information and Communications products and services (ICT) sold to EU final consumers by company in a given country
and 2-digit industry in the base year 2010. Post-2018 is a dummy variable equal to 1 for the years since 2018. Company
size is proxied by the total stock of AI and non-AI patents held by the company. Standard errors are clustered at the
company level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆ are significant at the 5% level, and with ⋆

are significant at the 10% level.

35



2014. This is perhaps not surprising, given that in 2014 the European Parliament demon-

strated strong support for the GDPR by voting in plenary with 621 votes in favour, 10

against and 22 abstentions.7 In other words, there was wide political consensus about

the policy implementation, in turn implying that most stakeholders—including the pri-

vate sector—where already informed about the upcoming regulation. Moreover, while the

GDPR was enforced in 2018, it was adopted by the European Parliament in 2016. Still,

firms only responded by reducing patenting in data-intensive technologies following the

implementation of the GDPR in 2018. A possible explanation is that applicants proactively

invested in data-saving innovations as a low-risk strategic hedge when the GDPR appeared

likely, but only reduced data-intensive patent applications after implementation when nec-

essary, reflecting their reluctance to abandon existing investments.

Table 10: Full sample results—alternative post-treatment periods.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

VARIABLES All AI Data saving Deep learn All AI Data saving Deep learn All AI Data saving Deep learn

GDPR exposure × post-2012 0.001 0.003 -0.002
(0.001) (0.003) (0.003)

GDPR exposure × post-2014 -0.001 0.004** -0.003
(0.002) (0.002) (0.002)

GDPR exposure × post-2016 -0.001 0.006** -0.004
(0.003) (0.003) (0.003)

Observations 53,753 36,397 36,397 53,753 36,397 36,397 53,753 36,397 36,397
R-squared 0.894 0.943 0.939 0.894 0.943 0.939 0.894 0.943 0.939
Applicant FE yes yes yes yes yes yes yes yes yes
Year FE yes yes yes yes yes yes yes yes yes

Notes: This table shows the correlation between the share of AI in patent family stocks and the share of each type of AI in
AI family stocks in the restricted sample focusing on companies. GDPR exposure is based on the share of sales of
Information and Communications products and services (ICT) sold to EU final consumers by company in a given country
and 2-digit industry in the base year 2010. Post-2012/2014/2016 are dummy variables equal to 1 starting from the relative
years. Standard errors are clustered at the company level. The coefficients with ⋆⋆⋆ are significant at the 1% level, with ⋆⋆

are significant at the 5% level, and with ⋆ are significant at the 10% level.

7 See https://www.edps.europa.eu/data-protection/data-protection/legislation/history-gen

eral-data-protection-regulation_en.
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4.5 Conclusions

This paper introduces a novel AI taxonomy, applied to patent data, to analyze key trends

in the data-intensity of AI development over time and space. We find that over the past

decade, AI innovation has increasingly shifted from knowledge- or rules-based systems

toward data-intensive deep learning. However, recent years—following the introduction

of the EU’s General Data Protection Regulation (GDPR) in 2018—have also seen growing

interest in data-saving methods, such as transfer learning, synthetic data generation, and

Bayesian approaches, possibly influenced by rising data costs and privacy concerns.

The potential influence of the regulatory environment on this trend is further high-

lighted by significant geographic disparities in AI patenting activity and technological spe-

cializations. Since the launch of China’s “Made in China 2025” industrial policy initia-

tive, for example, Chinese AI patenting activity has surged dramatically, particularly in the

public sector, with universities and government institutions contributing 86% and 54% of

global AI patents in these categories, respectively—far outpacing the 3% and 4% shares

of their U.S. counterparts. This dominance is especially pronounced in data-intensive AI,

supported in part by government procurement efforts that generate critical training data

for commercial applications (Beraja et al., 2021; Beraja, Yang and Yuchtman, 2023). In

contrast, the U.S. leads in data-saving AI innovation, with American companies responsi-

ble for 45% of global data-saving patent applications. Although the EU lags in overall AI

patenting activity, it is also more active in data-saving approaches in relative terms: 13%

of total private sector AI patents filed within the EU where data-saving compared to just

5% in China.

Thus, while all regions demonstrate higher patent activity in data-intensive AI, the rela-

tive balance between approaches varies substantially across jurisdictions. China shows the

strongest skew toward data-intensive innovation, while U.S. applicants maintain a more
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balanced portfolio across both domains. European applicants, though also filing more

data-intensive patents in absolute terms, show a comparatively stronger emphasis on data-

saving technologies relative to other regions.

Building on these insights, we formally explore how privacy regulation has shaped the

trajectory of AI innovation across regions. Our baseline estimates—including patents filed

by firms, universities, government institutions, and individuals—show that GDPR-exposed

applicants reduced data-intensive AI patents while increasing data-saving applications. The

average effect is driven by EU-based applicants. This regulatory impact manifests hetero-

geneously across applicant types. Companies, particularly larger and older EU firms, drove

the bulk of this shift: EU companies increased data-saving applications by over 30% while

reducing deep learning patents by more than 20%. We conclude that the EU’s emphasis

on privacy protection—although reducing AI patenting overall—has fostered innovation in

data-saving technologies. This regulatory-driven specialization suggests that policy choices

not only affect the volume of innovation but fundamentally shape its direction.

Our findings carry important implications for both innovation policy and market com-

petition. The GDPR appears to redirect technological development toward more privacy-

preserving approaches, demonstrating how regulation can shape innovation trajectories.

However, the stronger response among established firms suggests that privacy regulation

may inadvertently reinforce incumbent advantages. Indeed, a substantial body of work

has documented the adverse impacts of the GDPR for smaller companies and innovation

more broadly, leading to rising levels of market concentration (Frey and Presidente, 2024;

Peukert et al., 2022; Johnson et al., 2023). The forthcoming EU AI Act may exacerbate

this trend by increasing compliance burdens on smaller firms, while potentially further

shifting technological development toward less data-intensive approaches, as it empha-
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sizes explainability—a challenge for deep learning technologies.8 Investigating the impact

of the EU AI Act on both the volume and direction of technological change in AI is a

promising avenue for future research.

8On the EU AI Act, see L. Garicano, ”The Strange Kafka World of the EU AI Act: The Regulation Needs
Repealing.” Silicon Continent, 30 Oct. 2024. https://www.siliconcontinent.com/p/the-strange-kafka-world-
of-the-eu. Accessed on November 30, 2024.
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