
The Future of Work:  

Machine Learning and Employment 

 

 

 

Linda Perkio 

Somerville College 

 

 

Supervisor: Michael Osborne 

Department of Engineering 

University of Oxford



 i 

1 Abstract 

This project investigates the susceptibility of jobs to computerisation and particularly which 

features of a job determine the probability of computerisation. This is achieved by using 

Gaussian Process Classification. A set of labelled occupations is used to train and test the 

model and the effect of using different feature sets is explored. Feature selection in the 

form of greedy selection is used to find the feature set that achieves the best classification 

and thereby find the features that are most significant when determining if a job can be 

computerised. It is concluded that the most important feature is Originality and the best 

feature set for classifying the data in this project consists of Originality and Service 

Orientation. Furthermore, experiments are performed using linear embedding methods for 

feature learning. However, these experiments fail to prove that better classification can be 

achieved using this method.  
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4 Introduction 

 

The fact that machines are replacing jobs can be seen every day. Supermarkets are now 

utilising self-checkout points to replace the cashiers, people get cash out from an ATM 

instead of a bank office and airlines encourage passengers to check in online rather than 

at the desk at the airport. This project aims to improve the understanding of how 

susceptible jobs are to computerisation and in particular exploring what features 

determine whether a job can be automated. 

 

This analysis builds on the paper “The Future of Employment” (Frey & Michael A. 

Osborne, 2013), where the susceptibility of jobs to computerisation is investigated. In the 

paper they use Gaussian Process Classification and information about job features to 

predict the probability that different jobs can be computerised. This project builds on their 

work and expands to include more features and explore combinations of features to 

determine the set of features that best predicts the probability of computerisation. This will 

help understand the relationship between the job features and the automability of 

occupations. This is worthwhile because understanding the features that affect if a job can 

be computerised or not will help understanding the structural changes in the future labour 

market as current occupations are replaced by machines and new occupations are 

needed. The skills and abilities identified in this paper as determining if a job can be 

computerised will be particularly important skills in the future because these are the tasks 

that are difficult to automate. 

 

In order to determine the importance of different features a set of occupations labelled as 

possible or impossible to automate are used to train and test a Gaussian Process 

Classifier using different feature sets as inputs. The classification performance is then 
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evaluated to determine what input data best predicts the probability of computerisation. 

The features best predicting this probability represent the skills and abilities that cannot be 

easily automated.  



 3 

5 Technology and Employment 

 

A changing labour market where technology can replace workers is nothing new. In 1930 

Keynes wrote and warned people about the “disease” called “technological 

unemployment” (Keynes, 1930). Traditionally, routine tasks have been at risk of being 

replaced by technology but non-routine work has been considered safe from 

computerisation (Autor, Levy, & Murnane, The Skill Content of Recent Technological 

Change: An Empirical Exploration, 2003). However, with development in machine 

learning, mobile robotics and big data computers are capable of doing more and more 

tasks that have previously seemed impossible. For example, self-driving cars have been 

developed, a computer beat a the best human team in the quiz show “Jeopardy” and a 

modern phone has more computing power than any computer in the world had 20 years 

ago (The Economist, 2014). These are some examples of tasks that are non-routine but 

have now been successfully computerised. The number of tasks possible to automate is 

increasing and this means machines will be able to perform more jobs in the future. 

 

5.1 Developments in Technology 

The development in technology has had a significant impact on human development. 

Figure 5.1 shows a Graph of human development over time and as can be seen there is a 

constant slow rise until the industrial revolution and the development of technology. The 

graph shows how significant the development of technology has been in the history of 

human development. 
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Figure 5.1: Graph showing Human Social Development over time (Brynjolfsson & McAfee, 

The Second Machine Age, 2014, p. 7) 

 

Brynjolfsson and McAfee argue in “The Second Machine Age” that the development of 

technology has been the most significant event in human history. They refer to the 

industrial revolution as the start of the “Machine Age”. Furthermore, they make the 

argument that we are now entering a second machine age, which will have just as much 

impact on human development. This highlights the importance of understanding the 

advantages and limitations of new technology.   

 

5.2 Trends in Employment 

Normally it is assumed that economic growth will also mean reduced unemployment. 

However, after the recession we have seen a so called jobless recovery (Jaimovich & Siu, 

2012), meaning that as the economic growth recovered employment has not gone up to 

the levels before the recession. Figure 5.2 shows the development in GDP per capita and 



 5 

Labour Force Participation over time in the United States. As seen from the graph even 

though GDP has showed considerable growth during the last decade the employment rate 

has fallen. In short, not everyone has been able to benefit from the economic growth. 

 

Figure 5.2: Graph showing recent developments in Employment and Economic Growth 

(The World Bank Databank) 

 

The lack of job growth can have several different explanations but one argument is that 

technology is replacing labour (Brynjolfsson & McAfee, Race Against the Machine, 2011). 

Technology is developing fast and it is likely that more jobs will be automated in the future. 

Frey and Osborne suggest that as many as 47% of American jobs could be at risk of 

being replaced by machines (Frey & Michael A. Osborne, 2013). 

 

5.3 Job Features 

This project aims to investigate the features of different occupations and determine what 

features affect the automability of a job. The features considered are taken from the O*Net 
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database. This is a database of occupational features expressed “as a standardized, 

measurable set of variables” (O*Net Resource Center). In total there are 277 different job 

features listed. The occupational data is collected through surveying randomly selected 

workers within the desired occupation and the skills and abilities required for the different 

occupations are “developed by occupational analysts using the updated information from 

incumbent workers” (O*Net Resource Center). Out of the 277 job features 67 are used in 

this project. These features were selected because they had data available for all or most 

of the occupations considered as many occupations do not have data for all features. The 

data from the database represents the skills and abilities required to perform the 

occupations and are given a value between 0 and 100, which quantifies the level of a 

certain skill or ability is needed. The skills used are everything from Gross Body 

Coordination to Negotiation skills and represent creative, social, mental and physical 

skills. 

 

It is expected that certain skills and abilities will be particularly important for determining if 

an occupation can be automated or not. Despite all recent developments in technology 

there are still limitations in what tasks can be computerised. For example, “computers so 

far have proved to be great pattern recognizers but lousy general problem solvers”, “have 

shown little creative ability” and have limited fine motor and complex communication skills 

(Brynjolfsson & McAfee, Race Against the Machine, 2011). This would imply that abilities 

such as creative problem solving would be particularly useful for predicting the 

susceptibility of occupations to computerisation. The paper “The Future of Employment: 

How Susceptible are Jobs to Computerisation” (Frey & Michael A. Osborne, 2013) uses 

nine different O*Net features split into three categories to predict the probability of 

computerisation of over 700 different occupations. The features used belong to the 

categories Social Intelligence, Creative Intelligence and Perception and Manipulation to 

reflect the types of tasks where the abilities of computers are still very limited. 
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6 Gaussian processes 

 

The method used in this project was Gaussian Process Classification. Gaussian 

Processes (GP) is a non-parametric form of modelling that assumes all variables are 

normally distributed. An assumed prior together with observed training data forms the 

posterior distribution over the data. An advantage of using GPs is that it is non-parametric 

which means that the format of the function defining the relationship between input and 

output does not need to be specified in advance. The advantage of using Gaussian 

Processes for this particular application is that it also represents uncertainty in the output. 

Rather than simply computing the class associated with certain input data the Gaussian 

process classifier computes the probability that the data point belongs to any particular 

class. This is useful in this case as it gives the probability that any of the occupations in 

the experiment can be automated. The classifier trained as part of this experiment used 

70 hand labelled data points, where jobs had been labelled as possible to automate (𝑐 =

1) or impossible to automate (𝑐 = 0). The labels used were from the paper published by 

(Frey & Michael A. Osborne, 2013), where a number of academic labelled the occupations 

they were most certain about. These labels were used as training and test data for all 

further experiments. 

 

6.1 Covariance function 

The Gaussian Process classifier used in this report was implemented in Matlab. An 

important part of Gaussian Process classification is the covariance function. The 

covariance function used for most of this project was the exponentiated quadratic 

covariance function. This function was used as it was found to produce the best 
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classification for the employment data used in the paper by Frey and Osborne.  The 

exponentiated quadratic covariance function is of the form:  

 

 
𝑘 𝒙, 𝒙′ = 𝛾! exp −

1
2
𝒙 − 𝒙! !𝑴 𝒙 − 𝒙!  (6.1) 

 In addition to the exponentiated quadratic another covariance function was used in some 

experiments for comparison, the Matérn Covariance (𝜐 = !
!
). The Matérn covariance was 

not included in the paper by Frey and Osborne and was used in this project for 

comparison because it is less smooth than the exponentiated quadratic and can also 

model varying smoothness (Osborne, 2014/15). For the Matérn covariance 𝜐 = !
!
 was 

used because this is a commonly used version of the kernel and smoother than some 

other versions, which makes it easier to compare to the exponentiated quadratic. The 

form of this covariance function is:   

 𝑘 𝒙, 𝒙′ = 𝛾!(1 + 3 𝒙 − 𝒙! 𝑴 exp − 3 𝒙 − 𝒙! 𝑴  (6.2) 

The two different covariance functions were compared using the area under the receiver 

operating characteristics curve (AUC). This measure is equal to 1 for a perfect classifier 

and 0.5 if the classifier is completely random (Frey & Michael A. Osborne, 2013). 

Examples of this ROC curve can be seen in Figure 6.1 and Figure 6.2 for both covariance 

functions. 
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Figure 6.1: ROC for exponentiated Quadratic (AUC=0.8987) 

 

Figure 6.2 ROC for Matérn (AUC=0.8717) 
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Running the classification 100 times and using 35 randomly selected labelled data points 

as training data and the other 35 labelled points as test data each time gave the an 

average AUC for the Matérn covariance 0.8645 and the average AUC for the 

exponentiated quadratic was 0.8714. This means that the performance of both covariance 

functions was similar but the exponentiated quadratic Kernel performed the classification 

slightly better. On the other hand, using marginal likelihood, where a high score indicates 

good performance, to evaluate classification performance gave the Matérn covariance a 

higher score of -3052.48 compared to the likelihood when using exponentiated quadratic, 

which was -5267.46. 

 

6.2 Hyperparameters 

Although Gaussian Processes is a non-parametric method of classification there are still 

hyperparameters that need to be learned. The matrix of hyperparameters (𝑴) was defined 

as diagonal for two reasons. Firstly, it significantly reduces computation time by reducing 

the number of parameters to be computed from 102 to 12 for a set of 10 features. 

Secondly, it helps give an understanding of the significance of each feature individually 

since the value of the associated hyperparameter relates to the importance of that 

particular feature for the purposes of classification (Murphy, 2012, p. 519-520). The value 

of the hyperparameters is determined using maximum marginal likelihood. The maximum 

likelihood was computed in a Matlab script using the optimising function patternsearch. 

This is a direct local optimisation algorithm that searches a pattern of points around the 

current point specified by a basis matrix and a generating matrix. If any of the points in the 

pattern improves the objective function this point will be used for the next iteration 

(Troczon, 1997). One advantage of this optimisation function is that no derivatives are 

required or computed.   
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Using the most suitable hyperparameters is important for the classification performance. 

The hyperparameter associated with each feature is related to the lengthscale. Using the 

exponentiated quadratic covariance function the matrix 𝑴 is a diagonal matrix of 

hyperparameters. These parameters are the square of the inverse lengthscale !
ℓ𝓁!

. The 

lengthscale associated with a feature determines how much the classification changes 

with a change in that feature. For example, if the lengthscale of a feature is short this 

means a small change in the feature can significantly change the output while a longer 

lengthscale will give a smoother output (Murphy, 2012, p. 519-520). The effect of using 

different lengthscales can be seen in Figure 6.3, which shows plots of the outputs of one-

dimensional Gaussian Process regressions using the same data points but different 

lengthscales.  
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Figure 6.3: One-dimensional Gaussian Process output when using different lengthscales, 

(a) uses the lengthscale most suitable for the data (b) uses a shorter lengthscale and (c) 

uses a longer lengthscale. The grey areas show the 95% confidence interval (Rasmussen 

& Williams, 2006). 

 

6.3 Laplace approximation 

In order to perform Gaussian Process Classification some approximations must be made. 

This is because the mapping between the input data and output class will be non-linear 

and a Gaussian likelihood function is inappropriate (Rasmussen & Williams, 2006). In 

order to perform classification a discriminant function 𝑦 is defined where 𝑦 can be 

computed from the input data 𝑥. This discriminant function can then be used to compute 
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the probabilistic classification. The mapping from 𝑦 to class label 𝑐 is done using the 

logistic function 

 𝑝 𝑐 = 1 𝑦 =
1

1 + 𝑒!!
 (6.3) 

This non-Gaussian distribution is approximated by a Gaussian using Laplace’s 

approximation. This is achieved by fitting an un-normalised Gaussian distribution to the 

maximum value of the function (Bishop, 2009, p. 213-215). The approximation is found by 

iterating the function.  

 𝒚!"# = 𝑲!,! 𝑰 + 𝑫𝑲!,!
!𝟏(𝑫𝒚 + 𝒄 − 𝝈) (6.4) 

In the above equation 𝑲 is the covariance matrix, 𝑰 is the identity matrix, 𝒄 is the array of 

class labels, 𝝈 is the logistic function array and 𝑫 is a diagonal noise matrix 𝐷!! = 𝜎!(1 −

𝜎!), until it converges at a maximum (Barber, 2012, p. 426), The classification 

performance could have been improved by using a better approximation such as 

Expectation Propagation, which is specifically designed for use in Bayesian Networks 

(Minka, 2001) and is also the approximation method used in (Frey & Michael A. Osborne, 

2013). However, this approximation would have been more difficult to implement and 

since this project is focused on feature selection and relative feature importance as 

opposed to the absolute probabilities of computerisation it was decided that Laplace 

approximation would be sufficiently accurate and easier to implement. Using Laplace 

approximation instead of Expectation propagation does not significantly affect the results. 

In fact the AUC found in this project is similar to that found by Frey and Osborne in their 

paper and the only change in methodology is the approximation method. The AUC found 

when using Laplace approximation was 0.871 and the same figure found by Frey and 

Osborne when using expectation propagation was 0.894. This shows that expectation 

propagation gives more accurate classification but using Laplace approximation does not 

significantly impact the performance.  
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7 Feature Selection 

 

In order to improve classification performance and better understand what affects whether 

a job can be automated or not a variety of different feature combinations were 

investigated. In total 67 features from the O-Net database were used in different 

combinations. These particular features were selected because they had data available 

for all or almost all the different occupations used in this project. The focus was on feature 

selection as opposed to feature learning because this helps understanding the 

relationships between the features and what makes jobs susceptible to computerisation 

and this was considered more important than getting the best classification performance. 

 

7.1 Classification Performance Measures 

Several different measures were used to determine classification performance. The main 

measure of performance was marginal likelihood, calculated using  

 log 𝑝 𝒄 𝑿 ≈ 𝑙𝑜𝑔  𝑝 𝑐 𝒚 −
1
2
𝒚!𝑲!!𝒚 −

1
2
log 𝑲 −

1
2
log   |𝑲!! + 𝑫| (7.1) 

The likelihood was compared to area under the receiver operating characteristic curve 

(AUC), mean squared error and the mutual information. The values of AUC and mean 

squared error used were averages from performing the classification 100 times per 

feature set using different data points as training and test data.  

 

The main measure that was considered the most and was used in the case of conflicting 

results was marginal log-likelihood. This is because likelihood is a standard figure in 

Bayesian computations. In addition, it reduces the computation needed compared to AUC 

or Mean squared error as these methods both require the data to be split into a training 

and validation set. Splitting the data this way could introduce some bias and therefore the 

most accurate results are achieved by performing the classification several times using 
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different randomly selected training and validation sets and then computing the average 

AUC and Mean squared error. This requires more computation than simply calculating the 

marginal likelihood from the complete set of labelled data. For mutual information and 

likelihood one computation is enough although the issue with mutual information is that 

not all the probabilities are known. The formula used to calculate the mutual information is  

 
𝐼 𝐶,𝑋 = 𝑝 𝑥, 𝑐 𝑙𝑜𝑔

𝑝(𝑐, 𝑥)
𝑝 𝑐 𝑝(𝑥)

!!

= 𝑝 𝑐|𝑥 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑐|𝑥)
𝑝 𝑐

!!

 (7.2) 

In this equation the probability 𝑝  (𝑐|𝑥) is the result of the classification but 𝑝  (𝑥) and 𝑝  (𝑐) 

are not known. For the purposes of calculating mutual information 𝑝  (𝑐) is assumed to be 

0.5 and the empirical distribution is used for 𝑝  (𝑥). 

 

7.2 Feature Performance 

In order to achieve the best classification performance and to gain understanding of the 

significance of the features a variety of feature combinations were used for classification 

and with varying results. The performance of each of the features individually can be seen 

in Table 7.1. 

 

Table 7.1: Classifier performance of different feature sets using different performance 

measures 

Feature AUC Mutual 
information Likelihood  Likelihood 

(Matérn) 

Originality 0.8798 0.2105 -1723.87 -1727.61 

Coordination 0.8253 0.1181 -2395.20 -2478.35 

Management of 
Material Resources 

0.6550 0.0882 -2403.16 -2634.77 

Service Orientation 0.8548 0.1426 -2415.87 -2686.84 

Social 0.8470 0.2273 -2494.95 -2714.22 
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Feature AUC Mutual 
information Likelihood  Likelihood 

(Matérn) 

Perceptiveness 

Near Vision 0.4564 0.1572 -2614.57 -2884.01 

Fluency of Ideas 0.5919 0.1757 -2634.05 -2697.78 

Problem Sensitivity 0.4697 0.1272 -3089.22 -3243.50 

Systems Evaluation 0.7256 0.0582 -3723.56 -3814.50 

Judgment and 
Decision Making 

0.7245 0.1399 -3782.51 -3781.06 

Science 0.7001 0.0638 -3871.92 -4.38 E+12 

Time Management 0.7697 0.0227 -4048.74 -3707.26 

Selective Attention 0.8077 0.0034 -4105.35 -4106.30 

Systems Analysis 0.7103 0.0501 -4119.93 -3847.50 

Instructing 0.7912 0.0035 -4178.70 -4124.07 

Hearing Sensitivity 0.5887 0.0048 -4256.39 -4156.84 

Manual dexterity 0.5545 0.0338 -4266.98 -3988.87 

Negotiation 0.7052 0.0064 -4289.33 -4138.31 

Perceptual Speed 0.7064 0.0047 -4303.43 -4138.96 

Speech Clarity 0.7744 0.1223 -4319.89 -3922.89 

Time Sharing 0.5961 0.0366 -4372.08 -4044.19 

Learning Strategies 0.8377 0.1231 -4399.52 -4026.09 

Active Learning 0.6969 0.0592 -4454.96 -4041.02 

Persuasion 0.7051 0.0659 -4545.41 -4088.22 

Explosive Strength 0.4593 0.0526 -4571.32 -4118.53 

Night Vision 0.5511 0.1213 -4593.79 -4087.97 

Extent Flexibility 0.5289 0.0462 -4630.67 -376355.18 
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Feature AUC Mutual 
information Likelihood  Likelihood 

(Matérn) 

Stamina 0.5252 0.0877 -4630.72 -4144.27 

Finger dexterity 0.4239 0.0212 -4632.47 -4160.51 

Gross Body 
Coordination 

0.5554 0.0981 -4646.62 -4137.04 

Complex Problem 
Solving 

0.7385 0.0620 -4657.75 -4126.50 

Speed of Closure 0.5092 0.0232 -4697.05 -4132.94 

Static Strength 0.6091 0.0849 -4716.42 -4147.87 

Inductive Reasoning 0.8390 0.0982 -4718.58 -4127.97 

Auditory Attention 0.5977 0.0001 -4720.54 -4153.62 

Depth Perception 0.4831 0.0089 -4736.98 -4161.41 

Trunk Strength 0.5492 0.0595 -4809.37 -4195.99 

Assisting and caring 
for others 

0.6647 0.1537 -4813.81 -4086.71 

Management of 
Personnel Resources 

0.7348 0.0256 -4849.97 -4125.52 

Gross Body 
Equilibrium 

0.6070 0.0815 -4855.72 -4163.77 

Critical thinking 0.7257 0.0505 -4857.80 -4092.78 

Mathematical 
Reasoning 

0.6458 0.0143 -4859.96 -4174.19 

Number Facility 0.5890 0.0201 -4931.20 -4176.90 

Information Ordering 0.7093 0.0373 -4935.77 -4121.06 

Fine arts 0.7126 0.1908 -4941.37 -3972.30 

Mathematics 0.5467 0.0378 -4945.51 -4150.89 

Deductive Reasoning 0.6287 0.0309 -4961.41 -4113.04 
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Feature AUC Mutual 
information Likelihood  Likelihood 

(Matérn) 

Monitoring 0.8309 0.0014 -4970.98 -4178.43 

Dynamic Strength 0.4855 0.0502 -5012.78 -4150.58 

Flexibility of Closure 0.6688 0.0063 -5019.21 -4156.41 

Speaking 0.6709 0.0398 -5037.49 -4121.09 

Oral Expression 0.6926 0.0660 -5138.25 -4081.69 

Control Precision 0.4178 0.0116 -5144.50 -4180.72 

Visualization 0.6781 0.0425 -5224.76 -4176.66 

Arm-Hand 
Steadiness 

0.6333 0.0226 -5228.56 -4183.50 

Operation and 
Control 

0.5199 0.0456 -5298.87 -4177.13 

Category Flexibility 0.5294 0.0551 -5365.34 -4150.22 

Active Listening 0.6229 0.0054 -5515.92 -4151.85 

Spatial Orientation 0.6394 0.0234 -5538.23 -4129.41 

Oral Comprehension 0.5554 0.0810 -5587.19 -4165.51 

Writing 0.5887 0.0445 -5649.20 -4162.70 

Written Expression 0.5996 0.0723 -5670.07 -4139.54 

Cramped work space 0.4213 0.0220 -5712.31 -4204.22 

Equipment 
Maintenance 

0.4945 0.0235 -5856.51 -4121.12 

Administration and 
Management 

0.5294 0.0371 -5857.89 -4190.47 

Reading 
Comprehension 

0.6241 0.0757 -5933.87 -4156.77 

Written 
Comprehension 

0.5768 0.0524 -6006.51 -4149.86 
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7.2.1 Originality 

As can be seen from the table Originality is the best performing feature according to both 

AUC and likelihood using both exponentiated quadratic and Matérn covariance functions. 

In fact the likelihood is very similar when using the two different covariance functions, 

particularly for the features where likelihood is high. Originality in this context is defined as 

“the ability to come up with unusual or clever ideas about a given topic or situation, or to 

develop creative ways to solve a problem” (O*Net Online). This fits well with the research 

by (Bakhshi, Frey, & Osborne, 2015), which shows that creative jobs are at low risk of 

computerisation. Figure 7.1 shows a graph of a variety of occupations according to their 

probability of computerisation and creativity. As seen from the graph the creative jobs 

have a very low probability of computerisation.  

 

Figure 7.1: Probability of computerisation of jobs of varying creativity (Bakhshi, Frey, & 

Osborne, 2015) 
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7.2.2 Social Intelligence and Originality 

In addition, several other features perform well according to one or more measures. 

Furthermore, a feature whose performance is poor individually cannot be assumed to be 

insignificant as it can still potentially improve performance when combined with another 

feature. Using more than one feature for classification can result in a better performance 

than using each of the features individually. For example, Figure 7.2 shows the class 

labels plotted against Originality and Service Orientation, where Service Orientation is the 

skill of “actively looking for ways to help people” (O*Net Online). Aside from some outliers 

the two classes can be clearly separated using a function of the two features and using 

both features combined results in a better classification than using either of the features 

separately. As seen in Table 7.1 the likelihood using only Originality is -1723.87 and using 

only Service Orientation the likelihood is -2415.87. The likelihood when using the two 

features together is -1721.90, which is higher than both of the individual likelihoods. 

 

Figure 7.2: Class labels plotted against Service Orientation and Originality 
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In addition to Service Orientation, the feature Social Perceptiveness seems promising. 

This feature has the highest figure for Mutual Information and the figures for likelihood and 

AUC are also relatively high. Like Service Orientation Social Perceptiveness is a feature 

relating to social skills, which is traditionally difficult to automate (Brynjolfsson & McAfee, 

Race Against the Machine, 2011). As opposed to Service Orientation combining Social 

Perceptiveness with Originality does not improve the classification performance. Instead 

the likelihood when using Social Perceptiveness only is -2494.95 and combining with 

Originality gives the slightly lower likelihood -2559.11. A possible explanation for this is 

that Social Perceptiveness could be more closely correlated to Originality. As seen in 

Figure 7.3 the labels are less spread out than those of Service Orientation combined with 

Originality. In this plot the labels are collected closer to the diagonal, which could imply 

some correlation between the two features. 

 

Figure 7.3: Class labels plotted against Social Perceptiveness and Originality 
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7.2.3 Other Feature Combinations 

A variable that seems insignificant by itself but performs well combined with Originality is 

Time Sharing. As seen from Figure 7.4 it is hard to separate the classes based on Time 

Sharing only but when combining Time Sharing and Originality there is clearly a cluster of 

𝑐 = 0 labels in the top right corner of the plot. This implies that occupation requiring both 

Time Sharing and Originality are less likely to be automated. In fact the likelihood when 

using Time Sharing alone is -4372.08 while the likelihood when using the two features 

combined is -1971.37, which is significantly better than using Time Sharing alone. 

However, this likelihood is still lower than that of only Originality. 

 

Figure 7.4: Class labels plotted against Time Sharing and Originality 

  

Another feature that performs significantly better when combined with Originality is Gross 

Body Coordination. This is an interesting feature combination because using both features 

together makes the likelihood lower than each feature separately but the AUC is 

significantly improved. Figure 7.5 shows that Gross Body Coordination alone is not a good 

Originality
20 30 40 50 60 70 80

Ti
m

e 
Sh

ar
in

g

20

25

30

35

40

45

50
Automability = 0
Automability = 1



 23 

predictor of automability but combining the features generates a cluster of 𝑐 = 1 labels in 

the bottom left corner of the plot meaning that occupations requiring low Gross Body 

Coordination and Originality have a high probability of automation. The likelihood when 

using Gross Body Coordination alone is -4646.62 and combined with Originality the 

likelihood is -5847.16. This means that based on likelihood Gross Body Coordination 

gives poor classification when combined with Originality. However, using the two features 

combined gives a significant improvement in AUC. The AUC when using Originality only is 

0.8798, the AUC using Gross body Coordination is 0.555, which is a very poor figure, but 

combining the two features gives an AUC as high as 0.942. This example shows that the 

different performance measures can differ significantly, which emphasises the importance 

of selecting the right measure.  

 

Figure 7.5: Class labels plotted against Gross Body Coordination and Originality 
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7.2.4 Predicted probabilities 

The feature set used for classification determines the probability of computerisation 

predicted by the model for each occupation. Figure 7.6 shows a plot of probability of 

automation as a function of Originality for different feature sets. The result of the set of 

nine features used by Frey and Osborne is included in the plot as well as the result of 

using only Originality and the training class labels. The probabilities when based on nine 

features are more spread out than those based on only originality, which form a smooth 

curve. This is expected since the former is a function of multiple variables while the latter 

is a function of originality only. It can also be seen that the probabilities based on 

originality only reach lower minimum probabilities and higher maximum probabilities 

thereby being closer to some of the class labels. However, these probabilities cannot 

make predictions for where class labels overlap around Originality=40. It can also be seen 

that around the ends where there are no training points the probability tends to 0.5, which 

is the prior probability.  

 

Figure 7.6: Probability of computerisation as function of Originality based on different 

feature sets 
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The best classification performance found so far was achieved using a feature set 

consisting of Originality and Service Orientation. The resulting probabilities of 

computerisation from this feature set are included in Figure 7.7. These probabilities are 

less centred around 0.5 than those based on nine features and the maximum probabilities 

are even higher than those based on originality only and the minimums are lower. 

 

Figure 7.7: Probability of computerisation as function of Originality using different feature 

sets for classification 
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Figure 7.8: Probability of computerisation as function of Service Orientation using different 

feature sets for classification 

 

The probabilities when using only Service Orientation form a smooth curve as expected. 

The probabilities found using both Service Orientation and Originality also vary relatively 

smoothly with Service Orientation although the curve is slightly shifted. Looking at the two 

graphs it is not clear that Originality is more significant when the two variables are 

combined. However, the hyperparameters associated with each of the variables can also 

help determine which feature is given more weight when computing probability of 

computerisation as they are related to the lengthscales. When using a feature set 

consisting of Originality and Service Orientation only the hyperparameter associated with 

Originality is 0.0182 and the hyperparameter associated with Service Orientation is 

0.0086. This means that the lengthscale of Originality is 7.41 and the lengthscale of 

Service Orientation is 10.75 meaning that a change in Originality will have a larger impact 

on the impact but the lengthscales are similar meaning that both features are significant 

when computing the classification. 

Service Orientation
0 10 20 30 40 50 60 70 80

Pr
ob

ab
ilit

y 
of

 A
ut

om
at

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Based on Service Orientation only
Based on Service Orientation and Originality
Class Labels



 27 

 

Changing the feature set used for classification will change the resulting probabilities of 

computerisation. There is a change in probability of computerisation of each occupation 

when using two features compared to using only one. Changing the feature set from 

Originality to Originality combined with Service Orientation results in an average absolute 

change in probability of computerisation of 0.1111 and a standard deviation of 0.0936. 

The equivalent average change in probability when going from a feature set of Service 

Orientation only to the combined set is 0.1091 and the standard deviation is 0.0819. The 

biggest change in probability seen when introducing Originality in addition to Service 

Orientation is that of Mathematicians. When using Service Orientation only the predicted 

probability of computerisation is as high as 0.839. This is because the level of Service 

Orientation required is only 30. However, once Originality, where the level required is 71, 

is introduced the probability falls to 0.485. It is likely that the true probability could be even 

lower than this. When using Originality only the predicted probability is 0.325. The 

probability falls close to 0.5 when using both features because the features are in the 

region where training data is sparse meaning that the posterior probability approaches 

0.5. A table with various probabilities predicted using a feature set consisting of Originality 

and Service Orientation can be seen in Appendix A.	  

 

7.3 Greedy Selection 

In order to find the best combination of features, a greedy forward selection, as outlined in 

“An Introduction to Variable and Feature Selection” (Guyon & Elisseeff, 2003), was 

performed. This meant that each feature individually was used to perform classification 

and the feature that performed best was selected to be part of the set. The classification 

was then repeated with the newly selected feature combined with each of the remaining 

features in turn and this was used as the feature set for classification. Again the feature 

combination that resulted in the best classification was selected. Greedy selection was 
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used because it is a relatively fast method for finding good feature sets and it is also a 

good method for preventing overfitting (Reunanen, 2003). The disadvantage of using 

Greedy forward selection is that not all combinations of features are explored and once a 

feature is selected it will never be removed from the set even if this would improve 

performance (Guyon & Elisseeff, 2003). The performance measure used to select the 

features generating the best classification was marginal log-likelihood. When an iteration 

is performed the feature that results the highest marginal likelihood as calculated using 

Equation 7.1 is added to the set. 

 

7.3.1 Best Feature Combination 

The individually best feature based on likelihood is Originality. This feature was selected 

to be part of the feature set. Adding a further feature to the set and evaluating 

performance shows that the best classification based on likelihood is achieved by adding 

Service Orientation to the set already consisting of Originality. The likelihood when using 

these two features is -1721.90, which is better than either of the features individually. A 

heat map of the classification based on these features can be seen in Figure 7.9. From 

the plot it can be seen that the classifier performs well in the area around the training data. 

Further away the probability of automation converges to 0.5. This happens because the 

prior probability was set to 0.5, meaning that without any additional information from 

training data this will be the posterior probability predicted by the model. The model also 

predicts a probability of automation in the area between the two sets of labels. Since there 

are only two variables used to predict the probability of automation there is a region where 

the labels overlap. It is possible that taking further features into account could help 

determine the automability of occupations that fall in this region. Appendix A contains a 

table showing the predicted probability of computerisation of various occupations. 
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Figure 7.9: Heat map showing probability of computerisation as function of Originality and 

Service Orientation 
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Table 7.2:  Results of greedy selection algorithm 

Number of features Feature Added Maximum likelihood 

1 Originality -1723.87 

2 Service Orientation -1721.90 

3 Inductive Reasoning -1875.75 

4 Writing -2817.27 

5 Time Sharing -1779.83 

6 Social Perceptiveness -1881.11 

7 Control Precision -2057.53 

8 Learning Strategies -1935.29 

9 Written Expression -1909.22 

10 Judgment and Decision Making -2243.61 

11 Flexibility of Closure -2667.33 

12 Auditory Attention -2456.38 

13 Fine Arts -2473.55 

14 Trunk Strength -3462.66 

15 Arm-Hand Steadiness -3556.24 

16 Active Listening -4202.30 

17 Cramped Work Space -4441.95 

18 Extent Flexibility -4299.92 

19 Mathematics -4312.71 

20 Operation and Control -5058.24 

 

As can be seen in the above table the maximum likelihood is achieved with two features. 

This data can be seen in a plot of likelihood as a function of number of features in Figure 
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7.10. As seen from the graph the likelihood gets lower when adding more features. One 

explanation for this is the fact that there is probably some redundant information when 

using several different features, as different features will be correlated. Furthermore, since 

there are only 70 training data point it becomes difficult for the model to learn the 

relationship between large numbers of variables. Using all variables would give a set of 67 

features and 70 training points would be far from sufficient to model the effect of each of 

those features. 

 

Figure 7.10: Maximum likelihood achieved as function of number of features in feature set 
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7.4 Alternative Feature Selection Methods 

In addition to Greedy Selection some other feature selection methods have been explored 

in order to find the optimum feature set. 

 

7.4.1 Variable Ranking 

Feature selection using variable ranking involves performing the classification using each 

of the variables separately and then selecting the most promising ones to make up the 

feature set (Guyon & Elisseeff, 2003). The advantage of this method is that it is very 

simple and easy to implement and it is useful for finding the features that are individually 

the most significant. However, this method does not take into account any correlation 

between the features or how well particular features perform together. The set of two 

features selected using variable ranking will be the two features that achieve the highest 

marginal likelihood individually. As seen in Table 7.1 the features selected in this 

experiment would be Originality and Coordination. The marginal likelihood achieved using 

this feature set is -2419.47, which shows that this method does not find the optimum 

solution. 	  

 

7.4.2 Exhaustive Search 

An exhaustive search was performed over all possible sets of two features. This involved 

running the classification for every possible feature set and comparing the marginal 

likelihood achieved in each classification. This method is certain to find the optimum set of 

two features but it is also very computationally heavy. The exhaustive search confirmed 

that a feature set consisting of Originality and Service Orientation is in fact the optimum 

set of two features as no other combination of two features could generate a higher 

marginal likelihood. 
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An exhaustive search over more than two variables was not performed as adding more 

variables would significantly increase the number on classifications to be performed. 

There are 4422 (67×66) different combinations of two features and adding only one more 

feature would increase this number to 287 430 (67×66×65).  

 

7.5 Linear Embedding 

In an attempt to further improve classification performance linear embedding methods 

were explored. This is an experiment to explore feature learning as opposed to feature 

selection, which has been the main focus in this project. Feature learning can sometimes 

achieve better performance than feature selection, as an ideal feature set could be a 

linear combination of several features. This type of dimensionality reduction has the 

advantages of compressing the data and extracting the relevant information from a large 

set of features, which can improve classification performance (Mohri, Rostamizadeh, & 

Talwalkar, 2012). To achieve this feature learning a linear embedding was used. The set 

of 10 features producing the best likelihood based on the greedy selection were used and 

were embedded to a set of 3 features that were linear combinations of the ten features. 

The covariance function used was 

 𝑘 𝒙, 𝒙! = 𝛾2 exp    −
1
2
(𝒙 − 𝒙′)𝑹𝑇𝑹(𝒙 − 𝒙′)𝑇  (7.3) 

In the above equation 𝑹 is the embedding matrix and the parameters of this matrix were 

found by using maximum marginal likelihood, which is computed using Equation 7.1.  
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7.5.1 Results 

The maximum likelihood was achieved with the following parameters 

 𝛾 = 1.0604 

𝑹 =

1.8120
1.2989
−2.0591
1.4718
−0.3053

−0.6584 0.8541
−0.0252
−1.6791
−3.5906

0.4955
−0.3821
1.9819

−0.5277 1.1277
1.5697
1.7433
0.0065
1.3222
1.8962

−0.2768
−0.3416
1.4848

0.1144
−0.4913
0.8558

0.6795 5.4282
1.2370 0.3570

!

 

 

(7.4) 

The performance of this classification was compared to that of random embeddings 

(Wang, Zoghi, Matheson, Hutter, & de Freitas, 2013). The parameters of 𝑹 were all 

randomly generated and only  𝛾 was optimised using maximum likelihood. The likelihood 

found was the average likelihood achieved by performing 100 random embeddings of the 

same format as previously. It turned out to be very difficult to compute the optimum R 

because the likelihood function was highly multimodal. In fact over 150 unique local 

maximum points have been found when trying to find the global maximum. In order to 

compute the global optimum R the Matlab function Multistart was used. This is a function 

that performs local optimization at multiple uniformly distributed starting points 

(MathWorks). The local optimiser used was Fmincon. The best likelihood computed using 

linear embeddings where the parameters were optimised using maximum likelihood was -

4112.08. This can be compared to the average likelihood from running random 

embeddings of the same format, which was -4116.3. The likelihood achieved when 

optimising the embedding was surprisingly low given that combinations of the features 

had previously generated better performance.  

 

There are several possible explanations of why this is the case. Firstly, as mentioned the 

likelihood function is highly multimodal making it difficult to find the global maximum. 
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Furthermore, an optimising method that relies on running local optimisation several times 

would need to be run many times to generate an accurate optimum value. Because the 

target function is 31-dimensional it would need to be evaluated 2!" times just to have 

tested two different starting points in every dimension. Due to time restriction and 

computation time the optimisation was never performed for more than 1000 starting 

points. It might be the case that the optimisation method used in this case was not the 

most suitable. Rather than repeating local optimisations it could be that a global optimiser 

such as DIRECT “Lipschitzian Optimization without the Lipschitz Constant”, which 

searches the entire function for the global optimum point (Jones, Perttunen, & Stuckman, 

1993). Finally, because there were only 70 training data points it will be difficult to 

accurately compute 31 different parameters based on the training data.  

 

7.5.2 Embedding a Smaller Feature Set 

In order to overcome some of the problems arising from having many parameters to 

compute an alternative embedding was attempted by linearly combining 4 features into 2 

features through embedding. This reduced the number of parameters to compute from 31 

to 9. This time the 4 first variables selected using the greedy selection were used. This 

resulted in a slightly improved likelihood of -4073.17, which was achieved with the 

following parameters 

 

 𝛾 = 1.0612 

𝑹 =
2.7552
−1.4821

−2.0811
2.9428

0.2802
−0.5134

1.3090
1.3195

!

 
(7.5) 
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This embedding means that the two learned features are: 

 𝑥! = 2.7552  ×  Originality − 1.4821  ×  Service  Orientation 

+0.2802  ×  Inductive  Reasoning − 0.5134  ×  Writing 
(7.6) 

 

 𝑥! = −2.0811  ×  Originality + 2.9428  ×  Service  Orientation 

+1.3090  ×  Inductive  Reasoning + 1.3195  ×  Writing 
(7.7) 

 

 This is a small improvement in overall likelihood but a significant improvement compared 

to using a random embedding. The average likelihood when using 100 randomly 

generated embeddings is -87670.61, which is a much lower likelihood that that achieved 

by optimising the embedding parameters. It was also noted that the likelihood from each 

random embedding differed more than in the case with 30 parameters of 𝑹 where the 

likelihoods achieved were all very similar. The likelihood produced when using randomly 

generated embedding from 4 to 2 features varies from -4115.95 to -7249795.07. 	  

 

It is possible that there could exist better solutions to this problem but this experiment has 

failed to show that a weighted combination of the features can generate better 

classification performance than using the features individually. 
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8 Conclusions 

In summary, it seems Originality is the single most important feature to determine if a job 

is susceptible to computerisation. This means that jobs requiring significant creative 

problem solving are unlikely to be computerised in the near future while jobs requiring less 

original thinking will be at higher risk of computerisation. This confirms the argument by 

Brynjolfsson and McAfee (Brynjolfsson & McAfee, Race Against the Machine, 2011) that 

computers are still very limited in the ability of general problem solving. The fact that 

originality is the single most important feature for predicting computerisation suggests that 

this is the ability where computers are most limited. Another reason why originality is more 

significant than many other variables could be the fact that originality varies greatly 

between different occupations. The level of originality required varies evenly from 0 to 79. 

Other variables such as fine arts will be less significant since more than half of the 

occupations have a value of 0. 

 

The best feature set found was Originality combined with Service Orientation. The 

combination of these two features gave better performance than any other combination of 

features explored as part of this analysis. This implies that the combinations of tasks that 

are most difficult to automate are those that require creative problem solving and actively 

looking to help people. This agrees with previous research that identifies creativity and 

social intelligence as areas where computers are still very limited. It is possible, however, 

that taking more features into account will be better in some cases as there are many 

more features that make up an occupation. This is simply the combination of features that 

gave the best overall performance when applied to the 70 training data points used in this 

experiment. 
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8.1 Limitations 

There are some limitations with the analysis performed in this project. The data labels 

used for training and testing the model were all labelled by hand. This means there could 

be errors in the labels and given that there are only a total of 70 training data points this 

could affect the results. Ideally more training data would be desirable. For example, when 

doing experiments with embedding 70 training points are used to learn 31 parameters. 

This is not enough training data to properly learn the significance of all parameters, which 

can partly explain the poor results from the embedding experiments. 

 

Furthermore, Laplace approximation is not necessarily the most appropriate method for 

approximating the non-Gaussian part of the model. As mentioned in section 6.3 a method 

such as Expectation Propagation would give more accurate results. 

 

Finally, this analysis attempts only to explore which jobs can be automated. As David 

Autor points out “even when a task is fully codified, however, this does not mean it will be 

automated” but it depends on relative costs and other factors (Autor, The "task approach" 

to labour markets: an overview, 2013). This project considers only whether complete 

occupations can be performed by a machine and does not consider individual tasks that 

might be replaced. For some occupations it might make sense to replace certain tasks 

with machines but not the job as a whole. In addition, this analysis does not take into 

account the fact that humans will be preferred for certain jobs regardless if a machine 

could perform the same tasks. One such occupation is professional athletes, which 

according to (Frey & Michael A. Osborne, 2013) has a probability of computerisation of 

28%. This probability implies that there is a chance robots could perform all the tasks of 

athletes, however, it is unlikely that machines will actually replace professional sports 

competitors. 
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10 Appendix A: Probabilities of Computerisation 

Occupation Originality Service 
Orientation Label Probability 

Special Education Teachers, 
Secondary School 

52 52  0.1254 

Lawyers 52 52 0 01254 

Audiologists 54 52  0.1331 

Elementary School Teachers, 
Except Special Education 

55 50  0.1373 

Air Traffic Controllers 52 48  0.1413 

Pharmacists 48 54  0.1424 

Travel Guides 48 50  0.1429 

Medical Scientists, Except 
Epidemiologists 

55 48  0.1479 

Human Resources Managers 55 54  0.1531 

Education Administrators, 
Postsecondary 

55 54  0.1531 

Marketing Managers 57 50  0.1550 

Chiropractors 46 54  0.1599 

Lodging Managers 50 57  0.1649 

Advertising Sales Agents 46 55  0.1658 

Chefs and Head Cooks 48 48 0 0.1679 

Database Administrators 54 46  0.1725 

Landscape Architects 54 46 0 0.1725 

Physical Therapists 45 54  0.1728 

Veterinarians 45 54  0.1728 

Registered Nurses 46.625 57 0 0.1785 

Public Relations Specialists 50 46  0.1902 
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Occupation Originality Service 
Orientation Label Probability 

Substance Abuse and Behavioral 
Disorder Counselors 

46 57 0 0.1839 

Epidemiologists 50 46  0.1902 

Environmental Engineers 55 45  0.1950 

Sociologists 55 45  0.1950 

Computer Systems Analysts 58 46  0.1952 

Marriage and Family Therapists 48 59 0 0.1964 

Mental Health Counselors 57 57  0.2099 

Librarians 43 52  0.2102 

Floral Designers 50 45  0.2206 

Fitness Trainers and Aerobics 
Instructors 

45 48  0.2212 

Concierges 43 57 0 0.2234 

Travel Agents 46 61  0.2372 

Choreographers 57 43  0.2510 

Astronomers 57 43  0.2510 

Civil Engineers 58 43 0 0.2554 

Music Directors and Composers 56 42.5  0.2642 

Fashion Designers 63 46 0 0.2672 

Photographers 52 43  0.2707 

Chief Executives 64 48 0 0.2722 

Clergy 50 64 0 0.2774 

Mechanical Engineers 61 43  0.2815 

Industrial Production Managers 50.25 43  0.2967 

Animal Scientists 50 43  0.3013 
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Occupation Originality Service 
Orientation Label Probability 

Construction Managers 50 43  0.3013 

Radio and Television Announcers 50 43  0.3013 

Geographers 50 43  0.3013 

Electrical Engineers 50 43 0 0.3013 

Retail Salespersons 39 54  0.3032 

Materials Scientists 57 41  0.3105 

Insurance Sales Agents 39 52  0.3177 

Engineers, All Other 57 40.7143  0.3196 

Aerospace Engineers 54 41  0.3291 

Political Scientists 54 41  0.3291 

Skincare Specialists 41 48  0.3368 

Childcare Workers 44.5 45  0.3441 

Real Estate Sales Agents 37 52  0.3762 

Microbiologists 64 39  0.3862 

Chemical Engineers 64 39  0.3862 

Zoologists and Wildlife Biologists 46 43 0 0.4031 

Biomedical Engineers 71 43  0.4203 

Economists 49 41 0 0.4271 

Biochemists and Biophysicists 66 36  0.4379 

Financial Analysts 48 41  0.4559 

Computer Programmers 48 41  0.4559 

Interpreters and Translators 41 45  0.4605 

Editors 55 37  0.4607 

Physicists 79 43 0 0.4820 
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Occupation Originality Service 
Orientation Label Probability 

Mathematicians 71 30  0.4845 

Loan Officers 30 54 1 0.4918 

Flight Attendants 29 55 0 0.4930 

Dancers 50 39  0.5011 

Historians 0 29  0.5037 

Accountants and Auditors 41 44 1 0.5117 

Electricians 46 41  0.5189 

Credit Analysts 39 45 1 0.5234 

Insurance Underwriters 37 46 1 0.5351 

Funeral Attendants 16 43  0.5450 

Judicial Law Clerks 45 41 1 0.5513 

Teacher Assistants 41 43  0.5647 

Massage Therapists 37 45  0.5748 

Film and Video Editors 50 37  0.5827 

Telemarketers 34 46  0.5924 

Maids and Housekeeping 
Cleaners 

21 41 0 0.6065 

Dental Hygienists 32 46  0.6117 

Reporters and Correspondents 50 36  0.6127 

Correspondence Clerks 39 43  0.6177 

Statisticians 51.3333 32  0.6240 

Postal Service Clerks 27 45  0.6254 

Slaughterers and Meat Packers 18 21  0.6351 

Medical Secretaries 30 43  0.6822 

Biological Technicians 48 30  0.6843 
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Occupation Originality Service 
Orientation Label Probability 

Gaming Dealers 32 43 1 0.6897 

Cost Estimators 46 37 1 0.7005 

Market Research Analysts and 
Marketing Specialists 

46 37 1 0.7005 

Dishwashers 21 29 1 0.7016 

Light Truck or Delivery Services 
Drivers 

23 34 1 0.7047 

Paralegals and Legal Assistants 39 41 1 0.7058 

Technical Writers 43 27 1 0.7067 

Civil Engineering Technicians 43 39 1 0.7069 

Waiters an 

d Waitresses 
27 39 0 0.7177 

Medical Transcriptionists 23 23 1 0.7221 

Food Preparation Workers 23 30  0.7324 

Bicycle Repairers 32 41  0.7378 

Taxi Drivers and Chauffeurs 32 41 1 0.7378 

Motorboat Operators 36 41 1 0.7383 

Surveyors 44.5 37 1 0.7387 

Bus Drivers, Transit and Intercity 27 37 1 0.7436 

Cashiers 29 39 1 0.7461 

Commercial Pilots 41 39  0.7478 

Athletes and Sports Competitors 45 36 0 0.7505 

Actors 46 34  0.7531 

Farm Labor Contractors 29 37 1 0.7738 

Security Guards 29 37  0.7738 
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Occupation Originality Service 
Orientation Label Probability 

Industrial Truck and Tractor 
Operators 

27 25 1 0.7776 

Butchers and Meat Cutters 30 37  0.7870 

Payroll and Timekeeping Clerks 36 39  0.7924 

Watch Repairers 36 39  0.7924 

Hunters and Trappers 41 30 0 0.8063 

Couriers and Messengers 32 37 1 0.8088 

Forest and Conservation Workers 32 37  0.8088 

Parking Lot Attendants 32 37 1 0.8088 

Models 32 27  0.8117 

Construction Laborers 29 30  0.8148 

Locomotive Engineers 30 34  0.8148 

Manicurists and Pedicurists 32 36  0.8202 

Power Plant Operators 38 37  0.8267 

Bakers 38 30  0.8325 

Electrical and Electronic 
Equipment Assemblers 

32 34 1 0.8351 

Fishers and Related Fishing 
Workers 

32 32  0.8402 

Data Entry Keyers 34 30 1 0.8415 

File Clerks 36 34 1 0.8553 


